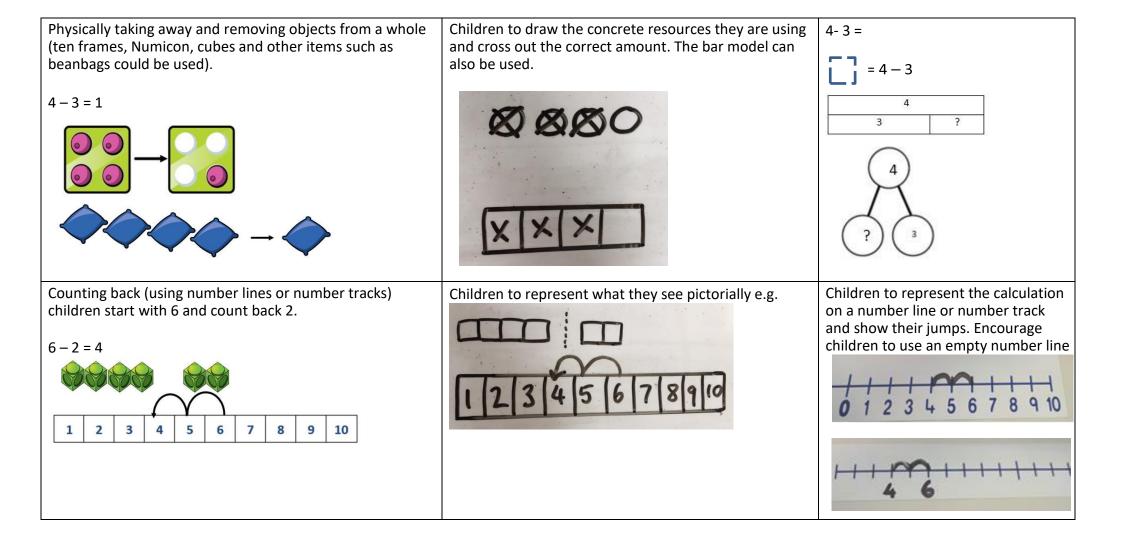

Calculation policy: Addition

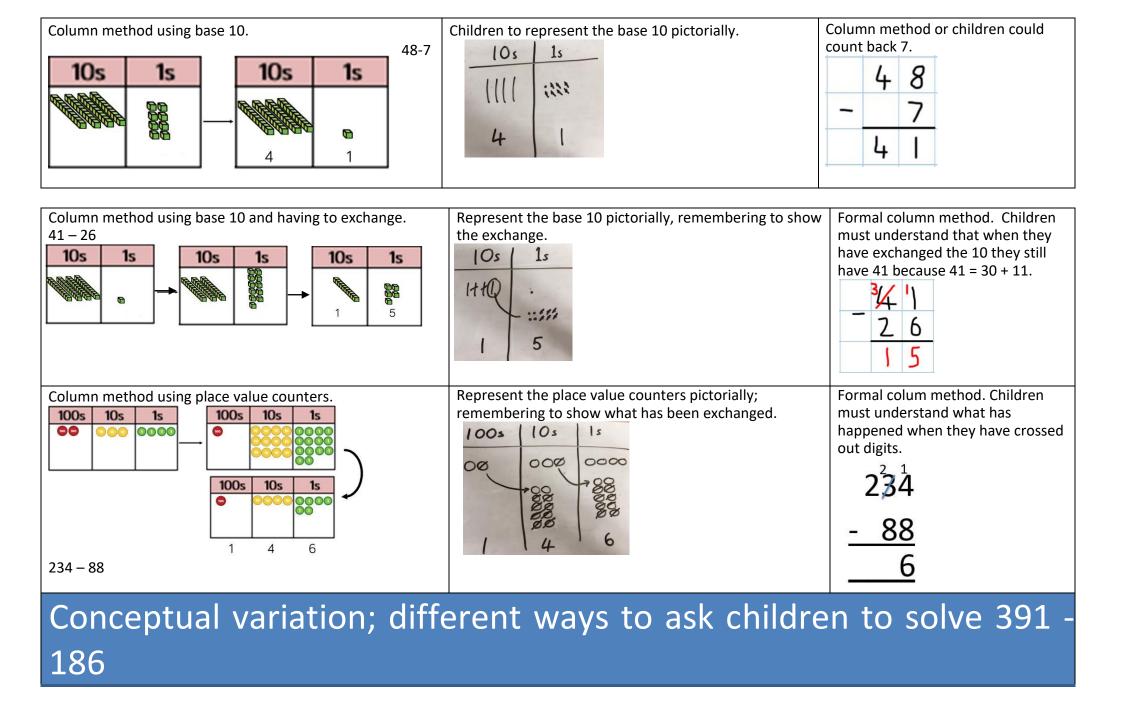
Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4 + 3 = 7 Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2

Regrouping to make 10; using ten frames and counters/cubes or using Numicon.		Children to develop an understanding of equality e.g. $6 + \Box = 11$ $6 + 5 = 5 + \Box$ $6 + 5 = \Box + 4$
TO + O using base 10. Continue to develop understanding of partitioning and place value. 41 + 8	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$



Calculation policy. SubtractionCalculation policy.


Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer,

Concrete	Pictorial	Abstract

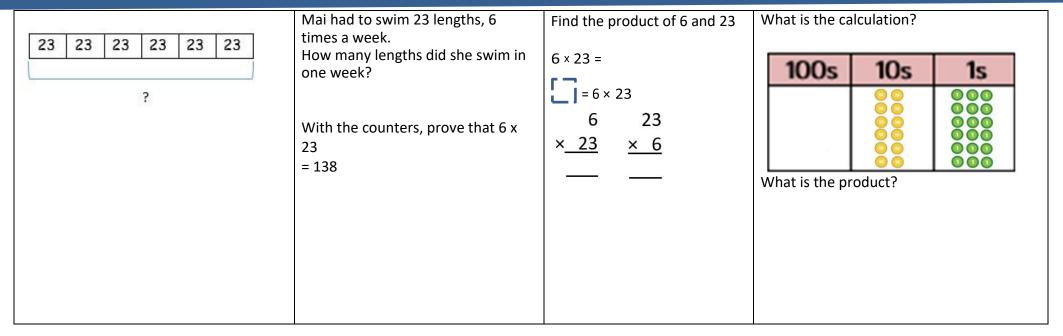
Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5.	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. 8 - 5, the difference is Children to explore why 9 - 6 = 8 - 5 = 7 - 4 have the same difference.
Making 10 using ten frames. -4 $-1-4$	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. 14 - 5 = 9 4 1 14 - 4 = 10 10 - 1 = 9

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

() (186)	Raj spent £391, Timmy spent £186. How much more did Raj spend? Calculate the difference between 391 and 186.	= 391 – 186 391 <u>-186</u>	Missing digit calculations
391 186 ?		 t is 186 less than 391?	0 5

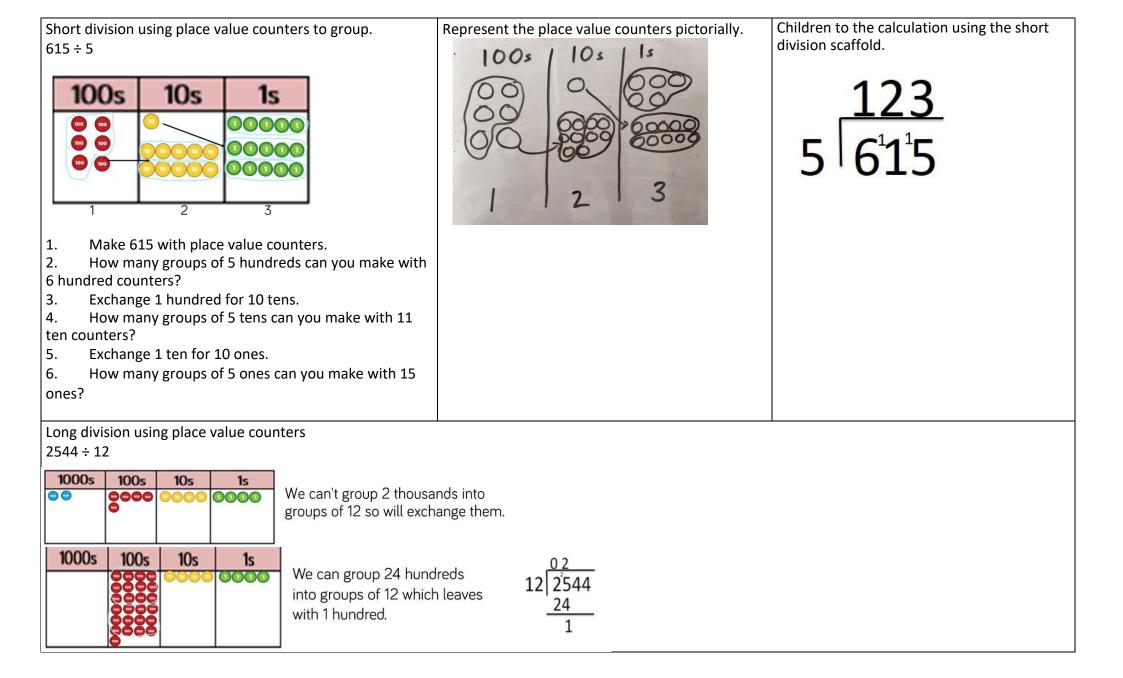
Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 4 + 4 + 4 There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12


Number lines to show repeated groups- Represent this pictorially alongside a number line e.g.: Abstract number line showing three jumps of four. 3 × 4 3 × 4 3 × 4 3 × 4		
		jumps of four. $3 \times 4 = 12$

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used
Formal column method with place value counters (base 10 can also be used.) 3 × 23	Children to represent the counters pictorially. $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $\cancel{3 \times 3} = 9$ 20 3 60 + 9 = 69 23 $\cancel{\times 3}{69}$

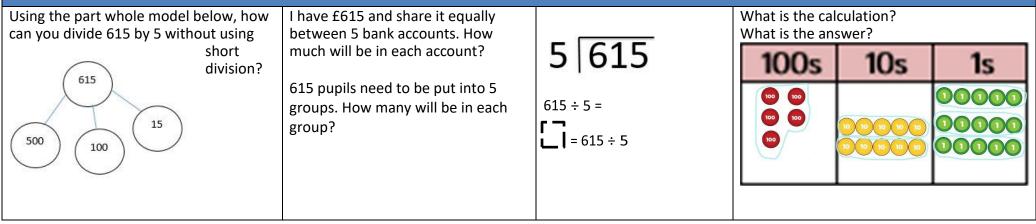
Formal column method with place value counters. 6 x 23	Children to represent the counters/base 10, pictorially e.g. the image below.	$6 \times 23 = $ $\begin{array}{r} \text{Formal written} \\ \text{method} \\ \hline \\ 23 \\ \frac{\times 6}{138} \\ \hline \\ 11 \end{array}$
When children start to multiply 3d × 3d and 4d × 2d To get 744 children have solved 6 × 124. To get 2480 they have solved 20 × 124.	etc., they should be confident with the abstract:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Conceptual variation	n; different ways to ask ch	nildren to solve 6 × 23

Calculation policy: Division


Key language: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract

Sharing using a range of objects.	Represent the sharing pictorially.	6 ÷ 2 = 3
		33 Children should also be encouraged to use their 2 times tables facts.
Repeated subtraction using Cuisenaire rods above a ruler. 6 \div 2 -2 -2 -2 -2 -2 -2 -2 -2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted. -2 -2 -2 -2 -2 -2 -2 -2


 2d ÷ 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. 13 ÷ 4 Use of lollipop sticks to form wholes- squares are made because we are dividing by 4. There are 3 whole squares, with 1 left over. 	Children to represent the lollipop sticks pictorially.	13 ÷ 4 – 3 remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over' 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
Sharing using place value counters. $42 \div 3 = 14$ $\bigcirc \bigcirc $	Children to represent the place value counters pictorially.	Children to be able to make sense of the place value counters and write calculations to show the process. $42 \div 3$ 42 = 30 + 12 $30 \div 3 = 10$ $12 \div 3 = 4$ 10 + 4 = 14

1000s	100s	10s	1s 0000	After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens. $\begin{array}{r} 0 & 2 & 1 \\ 12 & 2544 \\ 24 \\ 14 \\ 12 \\ 2\end{array}$	
1000s	100s	10s	1s	After exchanging the 2 tens, we 12 2544 have 24 ones. We can group 24 ones 14 into 2 group of 12, which leaves no remainder. 14 12 24 24 0	

Conceptual variation; different ways to ask children to solve 615 ÷

5

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Adding three single digits. Use of base 10 to combine two numbers.	Column method- regrouping. Using place value counters (up to 3 digits).	Column method- regrouping. (up to 4 digits)	Column method- regrouping. Use of place value counters for adding decimals.	Column method- regrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. (up to 3 digits using place value counters)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.

Multiplicatior	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays 2d × 1d using base 10	Column multiplication- introduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too